Investigating Medical Device Failure using Advanced Material and Failure Analyses

Scott R. Lucas, PHD, PE

Medical device failure analysis should include cognitive interviews, event simulation and review of medical records

Share this post

The FDA MAUDE database includes thousands of patient injury reports associated with broken, twisted, perforated, or otherwise damaged medical devices. There are hundreds of articles in the clinical literature on broken surgical instruments alone. Why did these devices fail? Was it a manufacturing or assembly defect? Could it have been user error? Was device integrity affected by cleaning agents? An engineering-based medical device failure analysis can delineate these possibilities. This is especially important in injury forensics to determine causation.

Investigations of medical device failures should be comprehensive and involve a systems-based approach, including cognitive interviews of those involved in the use and maintenance of the device, event simulation, and review of pertinent medical records.

Investigations should also incorporate engineering device failure analyses. Failure analyses include gross and microscopic device inspections as well as advanced techniques, such as:

  • Thermal analysis to verify melting temperature, crystallization enthalpy and oxidative induction time.
  • Elemental analysis of polymers, metals, ceramics and composites.
  • High-resolution metallography and surface morphology to examine failure surfaces.
  • Spectroscopy to determine molecular structure of polymers.

Advanced material analysis is also indicated for the identification of unknown materials. Unintended retention of foreign objects (URFO) is the second most reported sentinel event to The Joint Commission. Pieces of guidewire, procedural stents, drains, fragments of broken trocars, metallic shavings from laparoscopic instruments, and many other devices, instruments or fragments can be left behind following a procedure.

In some cases, a foreign body can be identified by context clues (e.g., a sponge left behind from an open surgery). But even in these cases, it may not be clear when the object was left behind (e.g., which surgery resulted in the misadventure). In addition, any contaminant found in the sterile environment on an instrument, in an instrument tray or in the surgical field can be identified using the techniques described herein. Including possible exemplar materials when identifying contaminants is very helpful.

We recommend that healthcare facilities and providers integrate material identification and medical device failure analysis into the regular investigative workflow of medical device forensics. This includes:

  1. Developing procedures for proper evidence collection and sequestering of broken or damaged medical devices.
  2. Developing procedures for gross and microscopic inspection of devices.
  3. Dedicating a light microscope with photogrammetry capability for microscopic inspection.
  4. Identifying laboratory capability for advanced failure and material analysis.
  5. Involving a metallurgist, industrial chemist, or appropriate materials scientist to interpret findings from advanced analysis.
  6. Establishing policies for handling damaged instruments and devices with the manufacturer and patient, which will vary depending on the type of device and whether a patient implant is affected.
  7. Involving facility risk management and legal counsel in the development of these policies.

Jensen Hughes is proud to support all areas of healthcare in the pursuit of high reliability and zero harm. Learn more about our biomechanics forensic injury investigation services.

Headshot of Scott R. Lucas

About the author

Scott R. Lucas
Dr. Lucas is a principal biomedical engineer and investigates incidents involving human injury or death. In healthcare, Dr. Lucas investigates critical patient or staff incidents to help medical device manufacturers, clinical providers, and facilities leadership determine causation and prevent recurrence.

Get in Touch

By completing the above form you have read, understood and accept our Privacy terms as well as our Cookie terms. Read our Privacy Policy.

Jensen Hughes ensures non-discrimination in all programs and activities in accordance with Title VI of the Civil Rights Act of 1964. If you need more information or special assistance for persons with disabilities or limited English proficiency, contact the Jensen Hughes Compliance Team at 410-737-8677 or 

More blog posts from Jensen Hughes

Improving Environmental, Social, and Governance Standards in Hospitals + Health Care

Apr 19, 2023

Today's business climate forces hospitals and health care organizations to face contradictory decisions. Now more than ever, they are required to save every dollar they can through cost avoidance and stewardship.

Read more
Fire Safety and Emergency Preparedness in Nursing + Health Care Facilities

Apr 7, 2023

This year marks the 20th anniversary of two particularly devastating nursing home fires that occurred in Hartford, Connecticut, and Nashville, Tennessee, claiming the lives of 31 people.

Read more
The Importance of Performing and Managing Facility Inspections, Testing + Maintenance

Mar 23, 2023

Today’s buildings are part of a modern trend of larger structures. These larger structures not only require more advanced fire protection systems but also a more considered approach towards ensuring life safety for the occupants

Read more